skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ancajas, Christelle_F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this study, we present the probeSATE‐G3P‐N3as a novel tool for metabolic labeling of glycerolipids (GLs) to investigate lipid metabolism in yeast cells. By introducing a clickable azide handle onto the glycerol backbone, this probe enables general labeling of glycerolipids. Additionally, this probe contains a caged phosphate moiety at the glycerolsn‐3 position to not only facilitate probe uptake by masking negative charge but also to bypass the phosphorylation step crucial for initiating phospholipid synthesis, thereby enhancing phospholipid labeling. The metabolic labeling activity of the probe was thoroughly assessed through cellular fluorescence microscopy, mass spectrometry (MS), and thin‐layer chromatography (TLC) experiments. Fluorescence microscopy analysis demonstrated successful incorporation of the probe into yeast cells, with labeling predominantly localized at the plasma membrane. LCMS analysis confirmed metabolic labeling of various phospholipid species (PC, PS, PA, PI, and PG) and neutral lipids (MAG, DAG, and TAG), and GL labeling was corroborated by TLC. These results showcased the potential of theSATE‐G3P‐N3probe in studying GL metabolism, offering a versatile and valuable approach to explore the intricate dynamics of lipids in yeast cells. 
    more » « less